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In this study, functional near-infrared spectroscopy (fNIRS) is utilized to measure the hemody-
namic responses (HRs) in the visual cortex of 14 subjects (aged 22–34 years) viewing the primary
red, green, and blue (RGB) colors displayed on a white screen by a beam projector. The spa-
tiotemporal characteristics of their oxygenated and deoxygenated hemoglobins (HbO and HbR)
in the visual cortex are measured using a 15-source and 15-detector optode con¯guration. To see
whether the activation maps upon RGB-color stimuli can be distinguished or not, the t-values of
individual channels are averaged over 14 subjects. To ¯nd the best combination of two features
for classi¯cation, the HRs of activated channels are averaged over nine trials. The HbO mean,
peak, slope, skewness and kurtosis values during 2–7 s window for a given 10 s stimulation period
are analyzed. Finally, the linear discriminant analysis (LDA) for classifying three classes is
applied. Individually, the best classi¯cation accuracy obtained with slope-skewness features was
74.07% (Subject 1), whereas the best overall over 14 subjects was 55.29% with peak-skewness
combination. Noting that the chance level of 3-class classi¯cation is 33.33%, it can be said that
RGB colors can be distinguished. The overall results reveal that fNIRS can be used for moni-
toring purposes of the HR patterns in the human visual cortex.

Keywords: Color detection; functional near-infrared spectroscopy; visual cortex; t-map; LDA
classi¯cation.
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1. Introduction

Color is a fundamental aspect of human perception
and also a®ects the human spirit. It should come as
no surprise, then, that color stimulation and de-
tection in the visual cortex have been the subjects of
long-standing study and debate.1–13 The objective
of the present study is to characterize appropriate
features of the hemodynamic response (HR) signals
obtained from the visual cortex upon color stimuli.
Five di®erent features (i.e., mean, slope, peak,
skewness, and kurtosis) of the obtained HR signals
are examined in order to classify the three di®erent
color stimuli (i.e., red, green, and blue (RGB)).

Scientists have investigated visual responses via
color stimuli using various modalities such as func-
tional magnetic resonance imaging (fMRI), elec-
troencephalography (EEG), and functional near-
infrared spectroscopy (fNIRS), among others. The
works on fMRI- and EEG-based color detection are
extensive and various, though the literature on
fNIRS is sparse.

The work of Xiao et al.1 on cortical activation in
response to chromatic stimuli revealed a topo-
graphic representation of chromaticity. They found
that upon color stimulation, a cortical response is
evoked in the visual cortex, and that this usually
occurs as a result of the °ickering of various colors
with gray, speci¯cally red–gray, green–gray, blue–
gray and yellow–gray combinations. Their results
showed that based on color blobs in the monkey
visual cortex, the red–green and red–gray °ickers
produced the strongest responses. Lu and Roe2 used
optical imaging to map color-selective responses in
V1–V2 and Tanigawa et al.3 in V4. Fine alignment
of optical maps and cytochrome-oxidase (CO)-
stained tissue revealed that color domains in V1
strongly associate with CO blobs. They also found
that color domains in V1 align along the centers of
ocular dominance columns. Another fMRI study
done by Goddard et al.4 showed greater blood-ox-
ygenation-level-dependent (BOLD) activation for
certain cone-opponent channels, whose ¯nding
suggests integration of those channels as early as
V1. However, Brouwer and Heeger5 found that the
transition from cone-opponent color coding to per-
ceptual color coding began at V1 and that the
activations were strongest at V4 and VO1. Simi-
larly, Parkes et al.,6 having measured the fMRI
BOLD responses to °ickering radial patterns com-
posed of perceptual colors (red, green, yellow, blue),

found that the BOLD responses evoked were simi-
lar, even though the individual di®erences with re-
spect to each color pattern were su±ciently reliable
to predict the color viewed. Mullen et al.,7 having
measured the fMRI BOLD response in the visual
cortex to radial chromatic red/green and yellow/
blue grating patterns di®ering either in cone acti-
vation or in multiples of detection threshold, de-
termined that the amplitude of the BOLD response
was not linearly related to either measure. In their
later investigation of the response of early and
extra-striate visual areas to color, speci¯cally high-
contrast red–green (RG), they found that the most
evident in the early visual areas (V1 and V2), but
selective responses, revealed as greater adaptation
between the same stimuli than cross-adaptation
between di®erent stimuli, emerged in the ventral
cortex, in V4 and VO in particular.8 Laeng et al.,9

working with a cohort of synaesthesia patients
viewing both chromatic letters and illusory colors,
measured the color di®erences in RGB and CIExyY
color spaces, and identi¯ed a correlation between
the BOLD activation and the color di®erence cal-
culated using either color space. About human vi-
sual cortex research, Kuriki et al.10 applied a
deriving histogram of hue-selective voxels measured
using fMRI with a novel stimulation paradigm.
They demonstrated that there exists a wide spec-
trum of hue selectivity in early visual cortex.

As for EEG research, Tang and Zhang,11 after
conducting a brain-activity-based color-determina-
tion study, reported that the dispositive brain ac-
tivity is a function of color energy and frequency.
Rasheed and Marini,12 applying an EEG modality
to the classi¯cation of RGB-color stimuli, classi¯ed
three visual conditions to 84%, 89% and 98% ac-
curacies with linear, polynomial, and radial basis
function kernels, respectively. Alharbi et al.13 simi-
larly evaluated a single-trial classi¯cation model for
RGB-color-stimulus-evoked EEG signals, and de-
termined that the empirical mode decomposition
residual provides the most accurate, fastest, and
most reliable classi¯cation (average accuracy:
88.5%, execution time: 14 s).

fNIRS is a noninvasive, optical imaging tech-
nique for continuous monitoring of oxygenated he-
moglobin (HbO) and deoxygenated hemoglobin
(HbR).14–33 It can provide both topographic15,16,34–36

and tomographic14,37 brain images. Speci¯cally,
fNIRS monitors regional cerebral blood °ow (rCBF)
variations by measuring, at wavelengths between

X. Liu & K.-S. Hong

1750006-2

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
7.

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/2
2/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



700 nm and 1000 nm, the near-infrared-light-
absorption changes caused by concentration var-
iations of HbO and HbR, the two primary ab-
sorbing chromophores in brain capillary blood.24,38

Likewise, fNIRS has been used to measure ¯nger-
opposition activation of the cerebral cortex.39 The
same ¯nger-opposition task also has been shown to
activate the primary motor cortex. A relevant
previous work indicated that normal subjects,
during the performance of a verbal °uency task,
showed activation of the left superior parietal
cortex. Right frontal activation during testing of
continuous performance also has been reported.40

These studies' determined HbO and HbR time-
course changes in the relevant activated cerebral
cortices are consistent with the present results;
that is, during cortical activation, HbO increases
and HbR decreases.

Classi¯cation as a process for distinguishing
data classes41 entails two steps: feature selection
and classi¯er execution.42 As features for distin-
guishing di®erent stimuli, the mean, peak, slope,
kurtosis, and skewness values of HbO signals for
individual trials, as averaged over all channels,
have been adopted. As a classi¯cation algorithm,
the linear discriminant analysis (LDA) technique
that separates data into two or more classes have
been widely utilized in various fNIRS applications
involving the detection of drowsiness43 and mental
workload,44 as well as in a hybrid brain–computer
interface (BCI) applications using both fNIRS
and EEG.45 The usability of these algorithms has
been well established in the literature; see, for ex-
ample, relevant review papers46,47 and multi-class
problems.48,49

In the present study, fNIRS is applied to detect
the visual cortex's HR to primary RGB-color sti-
muli, and the correlation between those responses
and the various stimuli are explored. Noise-re-
moval preprocessing and statistical analysis are
used to enhance the classi¯cation accuracy. Then,
the HbO signal is used via the three-class classi¯er
LDA employing the mean, peak, slope, skewness,
and kurtosis values as features to distinguish the
RGB colors. The best two-feature combination is
turned out to be peak and skewness. This indicates
signi¯cantly that the colors detected by fNIRS can
be di®erentiated using the above-mentioned fea-
tures. To the best of our knowledge, this is the ¯rst
fNIRS work on color detection in the human visual
cortex.

2. Materials and Methods

2.1. Subjects

A total of 14 healthy volunteers (10 males and 4
females, aged 24–31 years, two left-handed) partic-
ipated in the experiment. None of them had any
history of neurological disorder. All of them were
informed about the experiment and provided a
written consent according to the latest Declaration
of Helsinki. During the experiment, the subjects
were asked to sit comfortably and remain motion-
less as much as possible. A projector screen was

Fig. 1. Optodes con¯guration: The numbers represent the
measurement channels; Oz refers to a reference point in the
International 10–20 System.

Fig. 2. Experimental RGB-color paradigm: One trial consists
of a 10 s rest, a 10 s color stimulation, and a 15 s rest; three
continuous trials of each color stimulation constitutes one ses-
sion; one experiment consists of nine sessions (total time 947 s).

Detection of primary RGB colors
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placed in front of them at a distance of approxi-
mately 1m. The subjects were asked to keep their
eyes during both the test and rest periods. Also,
they were instructed to keep their blinking to the
minimal level.

2.2. fNIRS data

The data were acquired with a continuous-
wave NIRS imaging system (Dynamic Near-infrared
Optical Tomography (DYNOT); NIRx Medical

Technologies, USA) at a sampling rate of 1.81Hz.
The system emits laser light at di®erent wave-
lengths (760 nm and 830 nm) from each source.
The optodes con¯guration illustrated in Fig. 1
indicates the channel distribution and measurement
locations. The distance between adjacent optodes
is 27mm. The source-emitter pairs are positioned
above the visual cortex (the Oz position, according
to the international 10–20 system). During the
experiment, all lights were eliminated in order
to minimize signal contamination. The measured

(a) (b)

(c)

Fig. 3. Brain activation map (t-map) of the primary RGB colors displayed on a white screen beamed by a projector (averaged over
14 subjects). (a) Red-color stimulation, (b) Green-color stimulation and (c) Blue-color stimulation.

Fig. 4. The HbOs averaged over 14 subjects and their standard deviations for RGB-color stimuli.

X. Liu & K.-S. Hong
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intensity data of the two wavelengths were con-
verted to relative HbO and HbR concentration
changes using the modi¯ed Beer–Lambert law given
by50–52

�cHbOðtÞ
�cHbRðtÞ

� �
¼ �HbOð�1Þ �HbRð�1Þ

�HbOð�2Þ �HbRð�2Þ

� ��1

� �Aðt; �1Þ
�Aðt; �2Þ

� �
1

l � d
; ð1Þ

where �A is the optical density variation of the
light emitted at wavelength �j, �HbXð�j) is the ex-
tinction coe±cient of HbX in �M�1mm�1, d is the
unit-less di®erential pathlength factor (DPF), and

l is the emitter-detector distance (in mm). In
this study, constant values of DPF (d1 ¼ 7:15
for �1 ¼ 760 nm and d2 ¼ 5:98 for �2 ¼ 830 nm)
were used for all channels. For signal analysis, the
open-source software NIRS-SPM50,53,54 was utilized
in the authors' own MATLABTM (MathWorks,
USA) code.

2.3. Visual stimuli

Figure 2 provides the experimental paradigm used
in this work. As indicated, one task block consists
of each display of RGB colors, and the rest block

Fig. 5. Feature spaces in combination of mean, peak, slope, skewness, and kurtosis for distinguishing RGB-color stimuli (Subject
1): The triangle represents red-color the circle represents green-color and the square represents blue-color.

Detection of primary RGB colors
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displays the black screen. The used RGB colors are
the primary RGB colors generated by a beam pro-
jector (EPSON Model: EB-1915), whose hex and
decimal codes are: Red (#FF0000/255, 0, 0), Green
(#00FF00/0, 255, 0), and Blue (#0000FF/0, 0,
255). The duration of each color stimulus and rest
period are 10 s and 25 s, respectively. One session
includes three repetitions of RGB stimuli. Nine

sessions in total were performed; accordingly, the
entire fNIRS recording duration was 16min.

2.4. Signal preprocessing

In this study, three methods (noise ¯ltering, signal
de-trending, signal normalization) were applied in
the preprocessing process. First, the respiration

Fig. 6. Classi¯cation accuracies across 14 subjects based on 10 feature-combinations (mean, peak, slope, skewness, and kurtosis).

Table 1. Classi¯cation accuracies of 14 subjects and 10 combinations (mean, peak, slope, skewness, and kurtosis).

No.
Mean-
Peak

Mean-
Slope

Mean-
Skewness

Mean-
Kurtosis

Peak-
Slope

Peak-
Skewness

Peak-
Kurtosis

Slope-
Skewness

Slope-
Kurtosis

Skewness-
Kurtosis

Sub1 40.74 62.96 62.96 51.85 59.25 70.37 48.15 74.07 55.56 59.26
Sub2 44.44 55.56 44.44 48.15 59.25 55.56 44.44 48.15 44.44 48.15
Sub3 37.04 40.74 33.33 37.03 48.15 44.44 33.33 37.04 33.33 33.33
Sub4 40.74 44.44 59.26 66.67 44.44 55.56 62.96 44.44 51.85 48.15
Sub5 33.33 40.74 37.04 48.15 44.44 51.85 51.85 37.04 29.93 44.44
Sub6 48.15 41.85 51.85 48.15 48.15 55.56 40.74 40.74 44.44 37.04
Sub7 44.44 33.33 40.74 44.44 40.74 40.74 48.15 37.04 48.15 55.56
Sub8 48.15 51.85 40.74 51.85 55.56 44.44 44.44 51.85 51.85 33.33
Sub9 48.15 44.44 48.15 51.85 44.44 59.26 48.15 51.85 55.56 44.44
Sub10 62.96 70.37 55.56 59.26 74.07 59.26 48.15 51.85 48.15 40.74
Sub11 59.26 51.85 66.67 59.26 51.85 70.37 62.96 40.74 33.33 48.15
Sub12 40.74 48.15 51.85 51.85 51.85 66.67 44.44 51.85 33.33 48.15
Sub13 40.74 48.15 44.44 40.74 40.74 44.44 48.15 40.74 33.33 33.33
Sub14 40.74 40.74 44.44 40.74 44.44 55.55 51.85 37.04 40.74 40.74
Avg 44.97 48.23 48.68 50.00 50.53 55.29 48.41 46.03 43.14 43.92
Std � 8.07 � 9.79 � 9.84 � 8.06 � 9.14 � 9.58 � 7.75 � 10.14 � 9.11 � 8.07

X. Liu & K.-S. Hong
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(0.033Hz) and cardiac noises (1Hz) contained in
HRs were removed by a low-pass ¯lter working at a
cut-o® frequency 0.15Hz. Second, the trend of the
signal (e.g., low-frequency drift) was removed from
the time-series data using the de-trending tech-
nique55–57 (the detrend function in MATLABTM).
Third, the MATLABTM function mat2 gray was
used to normalize the signal data within the 0–1
range.

2.5. Activation map

Plotting of the cortical activation map is the most
important step in fNIRS data analysis. This map is
an intuitive display of brain cortex activity. The
t-value-based activation map represents the ratio
of the weighting coe±cient to the modeled HR. A
high t-value indicates that the measured signal is
highly correlated with the modeled HR. In the
present study, the t-values were calculated for the
averaged trials of individual color stimuli using the
robust¯t function available in MATLABTM.56–58

Figure 3 shows activation maps based on RGB-
color stimuli average over 14 subjects.

2.6. Feature selection and classi¯cation

For feature selection and classi¯cation, we used
the HbO signals averaged over the channels whose
t-value was higher than a critical value, which
was set to 1.6736.57 To improve the classi¯cation
accuracy and to reduce the classi¯cation time,
the scheme whereby only a 2–7 s window within the
overall 10-s task period was adopted.22 Then, the
mean, peak, slope, skewness, and kurtosis values

were computed. The mean was obtained by aver-
aging of 5 s window data points; the slope was cal-
culated using the poly¯t function in MatlabTM, and
the skewness and kurtosis were calculated using
MatlabTM's skewness and kurtosis functions. In the
classi¯cation, we used the LDA classi¯er, which is
to say the classify function available in MatlabTM,
to verify the individual HbO signals.22,54,58–62

3. Results

Figure 3 is the activation map averaged over the 14
subjects. The obtained t-values are displayed in a
color scale for more e®ective illustration of regional
activation. The color bar indicates the signal in-
tensity and the color in a pixel represents the pixel's
t-value, respectively. Figure 4 plots the HbOs av-
eraged over 14 subjects with the standard de-
viations for the RGB-color stimuli. It clearly
di®erentiates the peak values for individual color
stimuli: the maximum peak value, 0.1816, is the
green-color stimulus; 0.1642 is the red-color stimu-
lus; the smallest peak value, 0.1405, is the blue-color
stimulus. Figure 5 shows the 2D feature spaces
representing all of the two-feature combinations
among the mean, peak, slope, skewness and kurto-
sis, respectively, for Subject 1. Figure 6 and Table 1
plot and list, respectively, the subjects' two feature
combination classi¯cation accuracies as averaged
over all activation channels and trials. All, notably,
were above the chance level (33.33%). The best
averaged accuracy, 55.29%, was achieved with the
peak-skewness feature combination for 14 data
(Fig. 7).

Fig. 7. Classi¯cation accuracies of various feature combinations (averaged over 14 subjects).

Detection of primary RGB colors
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4. Discussion

The fNIRS technique was employed, in this study,
owing to its high potential as a neuro-imaging tool.
Speci¯cally, it was utilized to examine the brain
activities' spatial- and temporal-distribution infor-
mation. Figure 3 depicts, in the form of a t-map,
the spatial distribution together with the expected
HR induced by a given stimulus (i.e., RGB-color
stimulus).63–65 However, as the signal strength in
the target brain area cannot be revealed on a t-map,
and the temporal magnitude of the HR must also be
taken into account.

Also, in Fig. 3, evident are the brain activation
di®erences according to the three RGB-color sti-
muli. Figure 3(a) depicts that the red-color stimulus
induces more activity in the upper-right visual
cortex; Fig. 3(b) indicates that upon green color
stimulus there is brain activity on both sides of the
visual cortex, but more on the right side than on the
left; Fig. 3(c) shows that whereas there is no activity
on the right side, there are, in fact, a number of
active channels in the lower-left visual cortex. The
peak HR values plotted in Fig. 4, meanwhile, dis-
tinguish the RGB-color stimuli as well: 0.1816
(green), 0.1642 (red), and 0.1405 (blue).

The intuitive results plotted in Fig. 7 show the
peak-skewness combination to be the best feature
selection for RGB-color classi¯cation (highest ac-
curacy: 55.29%). Although the HR and, thus, the
classi¯cation accuracies varied by subjects (due to
individual di®erences), none of the subjects showed
an average classi¯cation accuracy below the chance
level. Variations in classi¯cation accuracy poten-
tially can be reduced using the optimum activation
period under better environmental conditions to
increase the number of trials.

There were some limitations observed during the
experimental study. First, potential anomalies were
evoked by sensory activity and attention/anticipation.
Eye blinking, for example, incurs °uctuation in neu-
ronal activity and peripheral HR. Second, subjects'
hair generates noise in the data. In order to compensate
for this problem, we recruited subjects with short hair.
Taking these issues into account and avoiding them
will further improve experimental results.

5. Conclusion

This study investigated the feasibility of detecting
the visual cortex responses to RGB-color stimuli

using fNIRS. RGB colors were detected by moni-
toring the visual cortex activity by means of t-map
and ¯ve features (the mean, peak, slope, skewness,
and kurtosis values). The t-map results showed the
right visual cortex to be more active during the red-
and green-color stimuli and the left visual cortex to
be more active during the blue-color stimulus.
According to the three-class classi¯cation results, all
of the average classi¯cation accuracies were above
the chance level (33.33%), and the highest accuracy,
for Subject 1, was 74.07%. The best two feature
combination was the peak-skewness combination,
which yielded the highest accuracy, 55.29� 9.58%,
as averaged over 14 subjects. The overall results
suggest that fNIRS-based detection of RGB-color
stimuli in the human visual cortex is feasible.
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